Software: Difference between revisions

From Wiki-DB
Jump to navigationJump to search
Sgonzo (talk | contribs)
Created page with "Im Folgenden werden die GPIOs aufgelistet, und deren Nummer, unter welcher Sie im Linux angeprochen werden können:"
 
Sgonzo (talk | contribs)
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
Im Folgenden werden die GPIOs aufgelistet, und deren Nummer, unter welcher Sie im Linux angeprochen werden können:
==GPIOs==
 
===Mapping===
  In the following sheet you can find the GPIOs and their linux-number
  [[File:GPIOs.jpg]]
 
===Control===
 
How to control a GPIO:
 
:{| class="wikitable"
|1. <code>''cd /sys/class/gpio''</code>
|-
|2. create new directory: <code>''echo 44 >export  ''</code>
|-
|3. go into this directory: <code>''cd gpio44''</code>
|-
|4. show if GPIO is used as an input or an output: <code>''cat direction''</code>
|-
|5. change output to '1'=high: <code>''echo 1 >value''</code>
|-
|6. change GPIO to input: <code>''echo in >direction''</code>
|-
|7. show input value: <code>''cat value''</code>
|} 
 
==PLD==
 
===Development Software===
To write your own VDHL-code you can use the ispLEVER Classic Software from Lattice
([http://www.latticesemi.com/products/designsoftware/ispleverclassic/index.cfm?source=sidebar]
 
 
You also need a programmer (e.g. HW-USBN-2A from Lattice) to deploy the VHDL-Code on your PLD.
 
After installing the software and the drivers for your programmer you can start a new project.
===Programming example===
You can find a demo-project here:[[media:PLD-demo.zip]]
 
You have to download the *.jed-File with the programmer to your PLD.
 
  In the constraint editor of ispLEVER you can define, which input X_VAR1 is.
  In this example GPIO E is defined as X_VAR1. If you define GPIO E as an
  output and set GPIO E high, the PLD LED should flash red.
  [[File:VHDL-Code.jpg]]

Latest revision as of 10:28, 8 August 2012

GPIOs

Mapping

 In the following sheet you can find the GPIOs and their linux-number
 

Control

How to control a GPIO:

1. cd /sys/class/gpio
2. create new directory: echo 44 >export
3. go into this directory: cd gpio44
4. show if GPIO is used as an input or an output: cat direction
5. change output to '1'=high: echo 1 >value
6. change GPIO to input: echo in >direction
7. show input value: cat value

PLD

Development Software

To write your own VDHL-code you can use the ispLEVER Classic Software from Lattice ([1]


You also need a programmer (e.g. HW-USBN-2A from Lattice) to deploy the VHDL-Code on your PLD.

After installing the software and the drivers for your programmer you can start a new project.

Programming example

You can find a demo-project here:media:PLD-demo.zip

You have to download the *.jed-File with the programmer to your PLD.

 In the constraint editor of ispLEVER you can define, which input X_VAR1 is.
 In this example GPIO E is defined as X_VAR1. If you define GPIO E as an
 output and set GPIO E high, the PLD LED should flash red.